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ABSTRACT

We introduce DIFFTACTILE, a physics-based differentiable tactile simulation
system designed to enhance robotic manipulation with dense and physically
accurate tactile feedback. In contrast to prior tactile simulators which primarily
focus on manipulating rigid bodies and often rely on simplified approximations to
model stress and deformations of materials in contact, DIFFTACTILE emphasizes
physics-based contact modeling with high fidelity, supporting simulations of
diverse contact modes and interactions with objects possessing a wide range of
material properties. Our system incorporates several key components, including a
Finite Element Method (FEM)-based soft body model for simulating the sensing
elastomer, a multi-material simulator for modeling diverse object types (such
as elastic, elastoplastic, cables) under manipulation, a penalty-based contact
model for handling contact dynamics. The differentiable nature of our system
facilitates gradient-based optimization for both 1) refining physical properties in
simulation using real-world data, hence narrowing the sim-to-real gap and 2)
efficient learning of tactile-assisted grasping and contact-rich manipulation skills.
Additionally, we introduce a method to infer the optical response of our tactile
sensor to contact using an efficient pixel-based neural module. We anticipate
that DIFFTACTILE will serve as a useful platform for studying contact-rich
manipulations, leveraging the benefits of dense tactile feedback and differentiable
physics. Code and supplementary materials are available at the project website1.

1 INTRODUCTION

In the goal of enabling robots to perform human-level manipulation on a diverse set of tasks, touch is
one of the most prominent components. Tactile sensing, as a modality, is unique in the sense that it
provides accurate, fine-detailed information about environmental interactions in the form of contact
geometries and forces. Although its efficacy has been highlighted by prior research, providing
crucial feedback in grasping fragile objects (Ishikawa et al., 2022), enabling robots to perform in
occluded environment (Yu & Rodriguez, 2018), and detecting incipient slip (Chen et al., 2018) for
highly reactive grasping, there are still advances in tactile sensing to be made especially in the form
of simulation.

Physics-based simulation has become a significant practical tool in the domain of robotics, by
mitigating the challenges of real-world design and verification of learning algorithms. However,
existing robotic simulators either lack simulation for tactile sensing or limit interactions to rigid
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bodies. To accurately simulate tactile sensors which are inherently soft, it is essential to model
soft body interaction’s contact geometries, forces, and dynamics. Prior work (Si & Yuan, 2022)
attempted to simulate contact geometries and forces for tactile sensors under (quasi-)static scenarios,
and it was successfully applied to robotic perception tasks such as object shape estimation (Suresh
et al., 2022), and grasp stability prediction (Si et al., 2022). However, highly dynamic manipulation
tasks have not been thoroughly explored. Other prior works approach contact dynamics by either
approximating sensor surface deformation using rigid-body dynamics (Xu et al., 2023) or using
physics-based soft-body simulation methods such as Finite Element Method (FEM) (Narang et al.,
2021). However, these methods are still limited to manipulating rigid objects.

Figure 1: Grasping a deformable object in the real
world and in DIFFTACTILE.

In this work, we aim to build a differentiable
tactile simulator, DIFFTACTILE , that
supports contact-rich robotic manipulation
of rigid, deformable, and articulated objects.
Differentiability, as a key component of our
work, provides fine-grained guidance for
efficient skill learning (Huang et al., 2021;
Xian et al., 2022). It also enables system
identification to close the sim-to-real gap (Li
et al., 2023). We implement DIFFTACTILE in
Taichi (Hu et al., 2019) which leverages parallel
GPU computing and auto-differentiation. To
demonstrate the capability and versatility of
our simulator, we evaluate it on a diverse set of manipulation tasks including handling fragile,
deformable, dynamic objects that cannot be addressed with prior tactile simulators. We summarize
our contributions below:

• We introduce DIFFTACTILE , a platform supporting various tactile-assisted manipulation tasks.
We model tactile sensors with FEM, objects in various materials (rigid, elastic, and elastoplastic)
with Moving Least Square Material Point Method (MLS-MPM), and cable with Position-Based
Dynamics (PBD). We simulate the contact between sensors and objects with a penalty-based
contact model. In addition, we accurately simulate the optical response of tactile sensors with
high spatial variation via a learning-based method.

• Our system is differentiable and can reduce the sim-to-real gap with system identification. From a
sequence of real-world data samples, we can optimize our simulator’s sensor material and contact
model parameters with differential physics and validate it with more general real-world scenarios.

• We demonstrate the improvement of skill learning efficiency with tactile feedback. We evaluate it
on stable and adaptive grasps of objects with diverse geometry and material properties, and four
contact-rich manipulation tasks.

2 RELATED WORK

Tactile simulation The most recent work on tactile simulation is built upon existing rigid-body
simulators. For example, Tacto (Wang et al., 2022), Tactile-Gym (Church et al., 2022; Lin et al.,
2022) were built upon PyBullet (Coumans & Bai, 2016). An efficient tactile simulation (Xu et al.,
2023) was built upon DiffRedMax (Xu et al., 2021), where a penalty-based contact model was used
to simulate the force distribution for tactile sensors. Even though it is computationally efficient to
use rigid body simulation, these tactile simulators approximate contact dynamics for soft bodies at
the cost of fidelity.

Alternatively, Finite Element Method (FEM)-based methods exist to accurately simulate soft body
dynamics. A physics-based tactile simulator (Narang et al., 2021) was developed for SynTouch
BioTac sensors (SynTouch) by using FEM in Isaac Gym (Makoviychuk et al., 2021). A grasp
simulator also used the FEM in Isaac Gym (Kim et al., 2022) with incremental potential contact
(IPC) model to handle contact dynamics. Taxim (Si & Yuan, 2022) used a superposition method to
approximate the FEM. We also model tactile sensors with FEM to maintain the simulator’s physical
accuracy and extend the contact model to handle objects with various materials beyond rigid.

Differentiable physics-based simulation Differentiable physics-based simulation has become
popular in recent years as it allows for efficient gradient-based policy learning compared to
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Tactile simulator Object model Backend Method Optical Differentiability
Rigid Soft Simulation

Tacto (Wang
et al., 2022)

✓ PyBullet Rigid body ✓

(Xu et al., 2023) ✓ DiffRedMax Rigid body ✓ ✓

Tacchi (Chen
et al., 2023)

✓ Taichi MPM ✓

Taxim (Si &
Yuan, 2022)

✓ PyBullet FEM ✓

(Narang et al., 2021) ✓ Isaac Gym FEM

IPC-
GraspSim (Kim
et al., 2022)

✓ ✓ Isaac Gym FEM

Ours ✓ ✓ Taichi FEM ✓ ✓

Table 1: Comparison with other state-of-the-art tactile simulators. We show that DIFFTACTILE is the only
tactile simulator supporting simulating objects with various materials while being system-wise differentiable
and physically accurate.

traditional sampling-based algorithms. PlasticineLab (Huang et al., 2021), FluidLab (Xian et al.,
2022), SoftZoo (Wang et al., 2023) were presented with differentiability for soft body manipulation,
fluid manipulation, and soft robot co-design, respectively, by leveraging Moving Least Square
Material Point Method (MLS-MPM) (Hu et al., 2018). Tacchi (Chen et al., 2023) also used MLS-
MPM to simulate the soft body deformation for GelSight (Yuan et al., 2017), a type of vision-
based tactile sensor but did not present differentiability and contact dynamics modeling. It is
shown that differential physics can be applied for system identification (Ma et al., 2023) to fine-
tune the simulator’s physical parameters and reduce the sim-to-real gaps. However, it remains
unclear whether the gradient-based approach can benefit to improve the efficiency of tactile-assisted
manipulation skill learning.

Optical Simulation Taxim (Si & Yuan, 2022) showed that data-driven approaches to simulate the
optical response of vision-based tactile sensors significantly outperform model-based methods such
as (Wang et al., 2022; Chen et al., 2023; Agarwal et al., 2021; Gomes et al., 2021). However, there is
a divergence in data-driven approaches. Previous work including (Higuera et al., 2023; Chen et al.,
2022; Zhong et al., 2023) use image generation techniques like generative models to perform style
transfer from a simulated image to the style of a real deformation. However, these methods are rather
data-intensive since they need a large variation of real-world examples to generalize well. Instead,
Taxim (Si & Yuan, 2022) takes a pixel-based approach that uses a polynomial lookup table to map
surface normals to RGB directly. It is more data-efficient but makes assumptions about the sensors
bidirectional reflectance distribution function (BRDF), which limits its applicability to sensors with
low spatial variance.

We compare our work with state-of-the-art tactile simulators in Table 1. We show that our work, to
the best of our knowledge, is the only work that is 1) system-wise differentiable to enable efficient
skill learning, 2) can accurately model the soft body dynamics and contact dynamics, 3) supports
broad categories of objects including rigid, elastic, elastoplastic, and cables, and 4) provide a data-
efficient approach to simulate optical responses for vision-based tactile sensors.

3 TACTILE SIMULATION

3.1 SYSTEM OVERVIEW

DIFFTACTILE models the soft contact between tactile sensors and objects including contact force
distribution, contact surface deformation, and optical response to provide dense tactile feedback.
We present four key modules of our system: 1) a Finite Element Method (FEM)-based tactile sensor
model in Section 3.2, 2) a learning-based method to simulate the optical response of tactile sensors
with high spatial variation in Section 3.3, 3) rigid, elastic, and elastoplastic object models using
Moving Least Square Material Point Method (MLS-MPM), and cable model using Position-Based
Dynamics (PBD) in Section 3.4, 4) a penalty-based contact model in Section 3.5.
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3.2 TACTILE SENSOR SIMULATION

We model the deformation of the tactile sensor’s soft elastomer under contact forces with FEM.
We discretize the sensor soft elastomer to tetrahedron elements and then apply boundary conditions
at the base of the sensor with position or velocity control. Since most tactile sensors’ elastomers
including ours are made from hyper-elastic materials, we apply the Neo-Hookean constitutive model
in our simulation to capture the non-linearity of the material property. The energy density function
Ψ and the first Piola-Kirchhoff stress tensor P used for governing equations are defined as:

Ψ(I1, J) =
µ

2
(I1 − 3)− µlog(J) +

λ

2
log2(J)

P(F) = µ(F− F−T) + λlog(J)F−T
(1)

where F ∈ R3×3 is the deformation gradient, I1 = tr(FTF) is the first isotropic invariants, and
J = det(F) is an additional invariant. Note that our tactile simulation can be easily customized with
different shapes, sizes, and materials by replacing the input mesh model or constitutive model.

To get tactile outputs including visual images and marker motions for vision-based tactile sensors,
we first extract the deformed surface mesh from each simulation step’s FEM solution, then we
interpolate the marker’s locations by weighting surface node locations given a set of initial markers
captured from a real sensor. We project 3D markers to the 2D image plane by using the tactile
sensor’s camera model.

3.3 OPTICAL SIMULATION

We reconstruct the optical response of a vision-based tactile sensor to contact using a data-driven
approach. We model the surface of the sensor as a height function z = f(x, y), and represent the
continuous spatially-varying reflectance function of the surface as a 4D vector-valued function. The
function input is the 2D viewing direction (d = θ, φ) and 2D surface normals (x = ∂f

∂x ,
∂f
∂y ), and

the output is the change in reflected color c = (r, g, b). We approximate our reflectance function
with a multilayer perceptron (MLP) fθ whose input is augmented with a positional encoding γ(d)
and γ(x) rather than directly d and x to enable the network to better fit data with high-frequency
variation (Mildenhall et al., 2021). Formally the encoding function is:

γ(p) = sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp) (2)

Our rendering scheme finally consists of approximating the deformation caused by the contact
indentation using pyramid Gaussian kernels as proposed in (Si & Yuan, 2022).

3.4 OBJECT SIMULATION

We aim to support broader categories of objects beyond rigid objects for more diverse manipulation
applications. We leverage the Moving Least Square Material Point Method (MLS-MPM) (Hu et al.,
2018) to simulate rigid, elastic, elastoplastic objects. MLS-MPM has been shown to be efficient in
simulating soft bodies. For elastic objects, we implement both corotated linear elasticity and Neo-
Hookean elasticity models. For elastoplastic objects, we use the von Mises yield criterion to model
plasticity upon elasticity. For rigid objects, we first treat objects as elastic using MLS-MPM, and
then we add rigidity constraints by calculating object transformation and enforcing the shape of the
object. For articulated objects, we approximate the simulation by using the MPM-based approach
and assign different materials for different parts. The joints are simulated as soft and thin bodies and
other parts are simulated as rigid bodies.

For another group of deformable objects such as cables and clothes, it is common to simulate them
with Position Based Dynamics (PBD) (Müller et al., 2007). We also incorporate cable objects in our
simulation by using PBD, where we constrain the stretch, bending, and self-collision.

3.5 PENALTY-BASED CONTACT MODEL

We handle contact dynamics between sensors and objects with a penalty-based contact model similar
to (Xu et al., 2023). At each simulation step, we first check contact collision by pairing the surface
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triangle mesh from FEM with surface nodes from the object’s particles (with either MPM or PBD).
For each pair, we calculate the sign distance field d and normal directions n from the node to the
triangle mesh. If d is negative, the node is penetrating the surface mesh and we need to apply normal
penalty force to both mesh nodes and particle node to constrain the contact. In addition, we apply
static or dynamic friction forces to the pair based on their relative velocities and normal forces. We
represent our contact model as:

fn = −(kn + kdvn)dn

ft = − vt

||vt||
min(kt||vt||, µ||fn||)

(3)

where fn and ft are contact forces in the normal and tangential direction with respect to the local
surface triangle. vn and vt are the relative velocities between the pair of the triangle and node in
normal and tangential directions. kn, kd, kt and µ are the parameters of contact stiffness, contact
damping, friction stiffness, and friction coefficient. Then the contact force f = fn + ft is applied to
both the triangle mesh nodes and the particle node of the pair as an external force.

FEM-MPM coupling FEM is a mesh-based method and we can extract surface triangle meshes
along with their associated node positions, velocities and face normal directions. MLS-MPM is
a meshless hybrid Lagrangian-Eulerian method that uses Lagrangian particles and Eulerian grids
to simulate continuous materials. We apply contact collision checking and contact force modeling
between FEM surface mesh nodes and MPM Eulerian grids for efficiency.

In each simulation step, we first pre-compute the internal elastic forces for all tetrahedral meshes
from the constitutive law for the FEM sensor model, and advance particles to grids for the MPM
object model. Then we check contact collision and calculate external contact forces for all pairs
of triangle meshes and grid, and add them to the surface nodes. In post-contact computing, we
transfer the velocities and affine coefficients from the grid to particles and do particle advection for
the MPM object model; and we advect the positions and velocities of the nodes based on the internal
elastic forces, external contact forces, and gravity for FEM elements. We also consider the external
boundaries such as tables and walls to constrain the positions of the objects.

FEM-PBD coupling Similarly to FEM-MPM coupling, we simply replace the MPM particles
with PBD particles for contact collision detection and modeling. For PBD objects, there’s no pre-
contact computation, but we need to solve the stretch, bending, and self-collision constrains after
the contact, and velocity advection based on the updated positions.

4 EXPERIMENTS

4.1 OVERVIEW

We present two sets of tasks with DIFFTACTILE: system identification, and tactile-assisted
manipulation. For system identification, we use real-world tactile observations to optimize the
simulator’s system parameters and to reduce sim-to-real gaps. Then we present five manipulation
tasks: grasping, surface following, cable straightening, case opening, and object reposing as shown
in Fig. 2. Tactile sensing can enable safer and more adaptive grasping to handle fragile objects such
as fruits. We grasp a diverse set of objects with various shapes, sizes, and materials without slipping
and damaging. For the other four contact-rich manipulation tasks, surface following requires the
sensor to stay in contact with a 3D surface and travel to an endpoint while maintaining a certain
contact force; cable straightening requires a pair of sensors to first grasp a fixed end of the cable,
and then straighten it by sliding towards the other end; case opening uses a single sensor to open an
articulated object via pushing; lastly, object reposing involves using a single sensor to push an object
from a lying pose to a standing pose against the wall. These four tasks represent rigid, deformable,
and articulated object manipulation.

4.2 SIMULATION SETUP

Initialization We initialize the simulation environment with a single tactile sensor s for system
identification, surface following, case opening, and object reposing, and two tactile sensors {s1, s2}
mounted on a parallel jaw gripper for grasping and cable straightening. Both tactile sensors’ and
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Figure 2: DIFFTACTILE tasks. Grasping: We grasp a set of four objects with different geometries and
materials. Surface following: A sensor travels on the surface while maintaining the contact. Cable
straightening: A pair of sensors straighten a cable by gripping and sliding from a fixed end. Object reposing:
A sensor pushes an object to let it stand against a wall. Case opening: A sensor opens the cap of a case.

objects’ shapes are initialized with STL or OBJ mesh models and then voxelized to FEM tetrahedron
meshes or MPM/PBD particles. Objects oi are initialized statically on the tabletop and we add a
vertical wall for object reposing. Tactile sensors are initialized statically near objects depending on
tasks but without contact. We initialize the poses of tactile sensor at time step t = 0 as Ts(0) =
(Rs(0), ts(0)) ∈ SE(3) where Rs(0) ∈ SO(3) and ts(0) ∈ R3 and similarly object pose as To(0).

State Each tactile sensor s is represented as an FEM entity with N nodes and M tetrahedral
elements. For each node ni, it contacts a 6D state vector si(t) = {pi(t), vi(t)} including a 3D
position pi(t) and a 3D velocity vi(t). For each element mi, it contacts a 4D index mapping from
the element to its associated four nodes. Both MPM-based and PBD-based objects are represented
with particles, and similarly, each particle oi also has a 6D state vector oi(t) = {pi(t), vi(t)}.

Observation We define two types of observations of each simulation step t, the state observation
and the tactile observation. State observation includes tactile sensors’ and objects’ poses Ts(t), To(t)
and each node’s or particle’s state si(t), oi(t). For tactile observation, we can output the sensor’s
surface triangle mesh as a deformation map, the sensor’s surface force distribution, or an aggregated
three-axis force vector.

Action At each time step t, actions for end-effectors (either tactile sensors or gripper with
kinematic chains down to tactile sensors) are queried from the controller as represented as a velocity
vector vs(t) = {∆Rs(t),∆ts(t)} to update the velocities of the FEM nodes.

Reward/Loss Each task’s reward or loss function is formed differently based on the task
objectives. We refer the readers to Section A.4 for more details.

4.3 SYSTEM IDENTIFICATION

Sim-to-real transfer for robot learning has been a long-standing challenge where the gap in between
heavily relies on simulation fidelity. To reduce the gap, we leverage differentiable physics to
optimize the physical parameters of material and contact models given example data from the real
world. Our optimization targets include Lamé parameters µ and λ of the FEM sensor model, and
kn , kd , kt , µ of the contact model. The optimization objectives include the 6-axis force readings and
tactile marker readings under four different contact scenarios: pressing, sliding, in-plane twisting,
and tilt twisting as shown in Fig. 3.

Experimental Setup and Dataset We collect sequences of contact data from both the
real world and simulation with synchronized control poses and velocities of the sensor.
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Press-slide↓ Press-twist-z↓ Press-twist-x↓

Sim2Sim

Random 1.69± 1.10 1.15± 0.51 1.43± 0.62

RNN 1.20± 0.42 0.68± 0.28 0.90± 0.26

CMA-ES 0.59± 0.12 0.47± 0.15 0.61± 0.20

Ours 0.53± 0.35 0.42± 0.24 0.58± 0.28

Real2Sim

Random 3.54± 1.73 2.59± 0.99 4.47± 3.31

RNN 3.29± 1.51 2.42± 0.90 4.53± 3.51

CMA-ES 3.42± 1.47 2.67± 1.22 4.99± 4.30

Ours 3.08± 1.27 2.38± 0.86 3.99± 2.89

Table 2: The pixel-wise tactile marker mean squared errors with standard deviation to evaluate system
identification.

As shown in Fig. 3, there are three types of data sequences, press-slide, press-twist-z
(twist along the z-axis), and press-twist-x (twist along the x-axis). For this experiment,
the sensor interacts with two surfaces with different frictional properties, acrylic and tape.

Figure 3: System identification to optimize the FEM sensor model
and contact model’s physical parameters with tactile readings and
force readings from the real world.

Experimental results We
evaluate two sets of experiments:
Sim2Sim and Real2Sim where
we use simulated data or real data
respectively as inputs of the system.
We optimize the sensor and contact
model parameters with press-slide
sequence and test on all three
sequences. We compare gradient-
based trajectory optimization (Ours)
with three baselines, Random,
RNN, and CMA-ES as shown in
Table 2. Here we use pixel-wise
mean squared error (MSE) between
predicted and collected tactile
markers as evaluation metrics. For Random, we randomly select parameters within a practical
range; for RNN, we input tactile marker readings and force readings and output the predicted
system parameters; for CMA-ES, we sample predicted parameters from algorithm’s distribution
function. Ours outperforms Random, RNN and CMA-ES on all sequences for both Sim2Sim and
Real2Sim.

We use the identified tactile sensor parameters from Real2Sim for all following manipulation tasks.
However, contact parameters such as the surface friction coefficient also depend on object materials.
But these can still serve as good references and we use them by adding randomization based on the
identified parameters. For object parameters, we randomize them within a range based on the tactile
sensor’s and contact model’s parameters to make sure the system can stably run.

4.4 OPTICAL SIMULATION

Figure 4: Tactile optical simulation compared with real data
capturing various contact geometries.

Experimental setup and dataset
We manually collect 250 example
deformations across the entire
sensing surface using a 4mm
spherical indenter from the real
world. The pose of the sphere is
manually annotated, and we split the
dataset into a training set consisting
of 200 examples, with the rest held
out for testing.

Experimental results We test our
method against a polynomial table
mapping from Taxim (Si & Yuan,
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L1↓ MSE↓ SSIM↑ PSNR↑
Taxim 16.1 85.74 0.998 38.47

Ours 7.94 56.10 0.999 39.42

Table 3: Image similarity metrics for our test set. We compare our method to Taxim (Si & Yuan, 2022) on L1,
MSE, SSIM and PSNR metrics. Our method performs better across all metrics.

Loss Lpos↓ Dslip↓ Ldeform↓

Elastic w/o tactile 0.04± 0.03 0.18± 0.06 N/A
w/ tactile 0.01± 0.01 0.07± 0.04 N/A

Elasto-
plastic

w/o tactile 0.70± 0.53 0.26± 0.09 0.85± 0.25

w/ tactile 0.24± 0.01 0.2± 0.05 0.89± 0.48

Table 4: Evaluation of grasping deformable, fragile objects with position, deformation losses, and slipping
distance by either using or not using tactile observations.

2022). We use pixel-wise MSE, L1, SSIM, and PSNR as evaluation metrics. As shown in Table 3,
our method outperforms Taxim across all metrics. Additionally, we verify the generalization and
accuracy of our method by rendering a set of test probes with varying geometry, along with
example real-world indentations for comparison in Fig. 4. We show our method can capture contact
geometries in great detail.

4.5 GRASPING

Experimental setup and dataset We evaluate our simulator on grasping objects with various
object properties including different shapes, sizes, weights, and material properties. As shown
in Fig. 2, we select four objects from EGAD (Morrison et al., 2020) dataset with different shape
complexity and assign each object with two different material properties, elastic, and elastoplastic.

We aim to grasp objects stably and adaptively to avoid slipping and damaging the object with
gradient-based trajectory optimization. Here we use two tactile sensors as fingertips and mount
them on a parallel jaw gripper. In each trajectory, the gripper first grips the object and then lifts it.
Based on our goal, we define the objectives with three types of losses 1) Position loss Lpos: we set
a 3D target position to reach after lifting; 2) Deformation loss Ldeform: we aim to keep the shape
of the object during the grasp by using the sign distance field of the object and the L1 distance of the
mass distribution between the current object and the target one to penalize the deformation (Huang
et al., 2021) 3) Slipping loss Lslip: we use the shear force detected between the fingertip and the
object to penalize the slippage during grasping.

Experimental results We evaluate the grasping with or without tactile feedback on three metrics.
We use Lpos for both types of objects, and we use Ldeform for elastoplastic objects only. In addition,
we measure the slipping distance of the object relative to the sensor for both sets of objects, the
slipping distance is denoted as Dslip. We show in Table 4 that the tactile feedback greatly improves
the grasping quality.

4.6 CONTACT-RICH MANIPULATION

Experimental setup For all four manipulation tasks, we define two different rewards, state reward
and tactile reward for manipulation skill learning. We evaluate our system’s learning efficiency
by comparing gradient-based trajectory optimization with a sampling-based trajectory optimization,
CMA-ES (Hansen et al., 2003), and model-free RL algorithms, SAC (Haarnoja et al., 2018), and
PPO Schulman et al. (2017).

Surface following We set up a sensor to travel and follow a curved 3D surface. We define the state
reward as traveling to a certain position on the 3D surface, and the tactile reward as keeping contact
with the surface while maintaining a constant shear motion.

Cable straightening We set up a parallel jaw gripper with two tactile fingers and a cable with one
end fixed to the wall while the other end is free. The state reward is defined as the distance between
the target position (the cable is horizontally straight) and the current position for each node on the
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Obs Rew Manipulation tasks
w/ tac w/ tac ObjectRepose ↑ CableStraighthen ↓ CaseOpen ↑ SurfaceFollow ↑

PPO

× × 4.57± 0.06 2.06± 0.00 −0.95± 0.04 1.33± 1.53
√ × 4.49± 0.08 2.07± 0.02 −0.93± 0.26 1.67± 0.58

× √
4.64± 0.15 2.03± 0.04 −0.83± 0.06 2.67± 1.15

√ √
4.30± 0.15 1.90± 0.18 −0.80± 0.24 1.33± 1.53

SAC

× × 5.00± 0.01 1.50± 0.02 −0.68± 0.29 11.00± 0.00
√ × 4.90± 0.01 2.03± 0.02 −0.89± 0.09 10.00± 5.57

× √
4.89± 0.11 1.60± 0.12 −0.84± 0.04 14.00± 2.00

√ √
4.68± 0.11 1.36± 0.03 −0.95± 0.07 1.33± 1.53

CMA-
ES

N/A × 4.65± 0.14 1.97± 0.14 −1.07± 0.05 2.33± 1.15

N/A
√

4.50± 0.05 1.97± 0.15 −0.98± 0.07 1.67± 1.15

Ours
N/A × 12.07± 12.46 1.27± 0.81 17.11± 0.05 4.00± 1.00

N/A
√

60.82± 0.00 0.89± 0.32 9.83± 0.38 51.67± 12.86

Table 5: Evaluation of manipulation tasks by comparing gradient-based optimization (Ours) with sampling-
based optimization (CMA-ES), and reinforcement learning approaches (SAC, PPO).

cable. The tactile reward is defined as the force applied to the cable to maintain the gripping while
being able to slide along the cable.

Case opening We initialize a closed case and we use a tactile sensor to push and open the lid of
the case. We define the state reward as the angle of the opened lid and the tactile reward as the push
forces to open the lid.

Object reposing A block is placed flat on the table and we aim to use one tactile sensor to flip
it 90 degrees and make it stand against a wall. We define the state reward as the angle between the
object and the floor, and the tactile reward as the push forces to flip the object.

Experimental Results To evaluate the performance of trained policies for different tasks, we
design task-specific evaluation metrics: We use the traveling distance of the sensor in contact with
the surface for the surface following task; the aggregation distance between the current and target
cable nodes’ locations for the cable straightening task; the orientation changes of the lid and the
object from the beginning to the end of the trajectories for case opening and object reposing tasks.

We show all experimental results in Table 5 by comparing our proposed gradient-based optimization
method with baselines. We show Ours outperforms baselines with a large margin to show its
learning efficiency. And w/ tactile has better performances compared to w/o tactile for most tasks
indicating tactile sensing helps on these contact-rich manipulation tasks.

5 CONCLUSIONS AND FUTURE WORK

We present DIFFTACTILE, a physics-based differentiable tactile simulator to advance skill learning
for contact-rich robotic manipulation. By providing models for tactile sensors, multi-material
objects, and penalty-based contacts, we greatly extend the capabilities and applicability of robotic
simulators. The differentiability of our system aids in reducing the sim-to-real gaps by using system
identification and improves the skill learning efficiency by providing gradient-based optimization.
We evaluate DIFFTACTILE ’s versatility with the grasp of a set of various objects, and manipulation
tasks including surface following, cable straightening, case opening, and object reposing. By
comparing with the state-of-the-art reinforcement learning and sample-based trajectory optimization
approaches, we demonstrate that DIFFTACTILE can enable efficient skill learning with tactile
sensing and potentially serve as a learning platform for broader tactile-assisted manipulation tasks.

In future work, we plan to integrate our tactile simulator into commonly used robotic simulation
frameworks to extend its usage on more general manipulation configurations such as adding tactile
sensors on dexterous robotic hands for in-hand manipulation. We would also like to investigate
robot learning with multi-modalities in simulation such as leveraging vision and touch feedback to
improve the robustness of the policies.
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A APPENDIX

A.1 SIMULATION DETAILS

We implement our whole system with Taichi (Chen et al., 2023) along with Python to benefit from its
high computing performance and auto-differentiability. With Taichi, our system can switch between
running with CPU or being accelerated by GPU by simply passing an argument to initialize the
Taichi environment. Taichi also supports automatic differential features for functions with explicit
time integration. Therefore, considering the implementation difficulty and generalizability, our
system is implemented with semi-explicit time integration, and without any extra effort, is fully
differentiable and can be used for gradient-based trajectory optimization. The simulation pipeline
for each simulation step can be seen in Fig. 6.

Figure 5: Simulation pipeline for each simulation step. Both the FEM sensor and MPM object have their
pre-contact updates, and then we use a two-way coupling to handle collision and calculate contact forces. The
contact forces are used in post-contact for both the FEM sensor and MPM object.

A.2 SYSTEM IDENTIFICATION DETAILS

Real-world data collection We collect sequences of contact data from the real world including
the 6-axis force readings from a robot arm end-effector, the poses of a Gelsight tactile sensor, and
the corresponding tactile images from the tactile sensor. We set up the experiment by mounting
a GelSight tactile sensor on the end-effector of an Ur5e robot arm and then controlling the robot
arm to get the sensor in contact with a tabletop surface. As discussed in (Yuan et al., 2017), four
general contact patterns are essential to capture and simulate for tactile sensors including contact
under normal force, shear force, in-plane torque, and tilt torque. Therefore we collect three types of
sequences of contact data: press-slide, press-twist-z, and press-twist-x. For each sequence, we start
by pressing the sensor normally to a flat surface with a constant velocity of 1 mm/s for 10 seconds
to get in contact. Then we slide the sensor along the surface, twist it along the normal direction, or
twist it along a horizontal direction to finish press-slide, press-twist-z, and press-twist-x respectively
with a constant velocity of 1 mm/s or 2 degrees/s for 10 seconds.

Gradient-based estimation We define the losses including the pixel-wised tactile marker
distances as the tactile loss and three-axis force errors as the force loss between the simulated and
ground truth data. Since the two losses are on different numerical scales, we aggregate them by
scaling with weights 10:1 as the final loss. We use Adam optimizer with β1 = 0.9, β2 = 0.999.
Learning rate parameters are lrkn = 20.0, lrkd = 20.0, lrkt = 5.0, lrfc = 5.0, lrµ = 50.0,
lrλ = 50.0 depending on their numerical scales. We run 100 optimization steps for each trajectory.

RNN-based estimation We use the Long Short-Term Memory (LSTM) model as the network
architecture. The inputs of the LSTM module are with the size of 2 × 136 + 3 = 275, where we
use 136 tracked markers’ 2D motions from tactile images, and three-dimensional aggregated contact
forces. We set the hidden layer size to 256 and used the default settings for other parameters. We use
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a linear layer after the LSTM module with an input size of 256 and an output size of 6, to predict the
six parameters of the sensor material and the contact model. We generate a simulated dataset that
includes tactile marker readings, and three-axis contact force readings based on randomized system
parameters. Our dataset has 2010 samples, 1800 for training, 200 for validation, and 10 for testing.
Each sample’s system parameters are randomized within pre-determined ranges, which ensures their
real-world applicability as shown in Table 6. The model was trained in batch size of 32 for 3000
epochs, and using an Adam optimizer with a learning rate of 0.001.

Parameter Lower Upper
Kn 10 100

Kd 100 400

Kt 50 150

Fc 5 20

µ 800 1500

λ 7000 10000

Table 6: Range of parameter randomization.

Random estimation We also provide a random estimation as our baseline. We use 10 sets of
randomized system parameters from our dataset and then compare the simulated tactile markers
with the ground-truth markers either from the simulation or the real world.

Experimental details We evaluate the system identification with simulation-to-simulation
(sim2sim) and real-to-simulation (real2sim). For sim2sim, we create a dataset by randomly sampling
ten sets of parameters within appropriate ranges and simulating their corresponding tactile marker
data. We validate different methods including baselines and ours by predicting parameters on this
dataset. The Mean Squared Error (MSE) of the marker positions between the ground truth and the
simulated ones with estimated parameters is used as the evaluation metric. We compute the mean
and standard deviation of these ten average marker errors for the entire trajectory.

For real2sim, we collect the dataset from the real world and apply different methods including
baselines and ours to estimate the parameters. Then we simulate tactile markers using the optimized
parameters and evaluate the performance by computing the mean and standard deviation of the
marker errors between the actual and simulated tactile marker data.

A.3 OPTICAL SIMULATION DETAILS

A.3.1 NETWORK ARCHITECTURE

Figure 6: Multi layer perceptron neural network architecture used for optical simulation inspired by
(Mildenhall et al., 2021). We represent inputs with green blocks, hidden layers with blue blocks, and outputs
with red blocks. Solid arrows represent ReLU activation, dotted arrows means no activation, and dashed arrows
mean sigmoid activation.

⊕
represents vector concatenation.

A.3.2 TRAINING DETAILS

In our experiments we optimize our model using ADAM optimizer with a fixed learning rate of 1e-5
for 500 epochs. Each batch consists of all the data from a single example image. Training takes
approximately 45 minutes for 200 examples.
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Lr ObjectRepose CableStraighten CaseOpen SurfaceFollow GraspElastic GraspPlastic
lrp 5e0 1e− 2 1e3 5e− 7 5e− 2 5e− 2

lro 1e3 1e− 2 1e1 5e− 5 1e− 5 1e− 5

lrw N/A 1e− 2 N/A N/A 5e− 2 5e− 2

Table 7: Learning rate of ours method in each task

ObjectRepose CableStraighten CaseOpen SurfaceFollow GraspElastic GraspPlastic
α 1e1 1e− 2 1e1 1e2 1e2 5e− 2

β 5e− 12 1e− 5 5e− 12 1e0 5e0 1e1

Table 8: Coefficient of combined loss α and β of each task

A.4 DIFFTACTILE TASK AND EVALUATION DETAILS

A.4.1 TASK SETUP DETAILS

Reinforcement Learning (RL) We use object particles’ state vector oi(t) and tactile sensor’s
pose Ts(t) as state observations. Additionally, we use tactile markers’ position in 2D image
mi = (ui, vi), three-axis contact force F (t) = (Fx, Fy, Fz), and contact location center l(t) by
averaging all in-contact nodes’ locations as tactile observations. Given that the total number of
markers is 136, we downsample the number of object particles to four times of the number of
markers, ensuring a balanced dimensionality across different input segments. The input vector is
formulated as either only state observation or with additional tactile observation. Then it is fed into
a Multi-Layer Perceptron (MLP) policy network.

We use stable-baseline3 (Raffin et al., 2021)’s default PPO and SAC as our policy networks. Given
an initial trajectory which is the same for all baseline methods, the policy network takes the input
vector and outputs an action ∆vs(t) of the sensor for each time step. Then we update the sensor’s
velocity as vs(t)+ = ∆vs(t). We constraint the actions in the range of [−0.15, 0.15] for a reasonable
action size.

CMA-ES In each optimization step, we generate 20 new trajectories based on the current trajectory
with a standard deviation of 0.15 for a fair comparison with RL. We evaluate each new trajectory’s
loss and then update the policy based on the evaluation. This then informs the generation of the
next optimization step’s 20 trajectories. We used the same initial trajectory as RL and ran 100
optimization steps in total for each task.

Gradient-based Optimization (Ours) , In each optimization step, we forward the simulation
and calculate the defined loss, and then backpropagate the gradients from the loss to the target
optimization variables. We then update the target variables with Adam optimizer. To enhance
optimization efficiency, we use different learning rates for different optimization variables. The
hyper-parameters can be found in Table 7, where lrp is the learning rate for translation, lro is the
learning rate for orientation, and lrw is the learning rate for the gripper’s width. Note that for tasks
where we use a single tactile sensor, the value of lrw is listed as N/A.

A.4.2 LOSS AND REWARD

During training, we assign task-specific weights to state and tactile losses, denoted as α and β. The
final loss is then calculated as Ltotal = α × Lstate + β × Ltactile. The task-specific values for
α and β are provided in Table 8. We use the losses discussed in Section 4.5 and Section 4.6 for
optimization-based methods including our gradient-based method and CMA-ES; for model-free RL
algorithms, we subtract the cumulative loss of two consecutive steps to obtain each step’s loss, and
then calculate the reward to fit the settings of RL algorithms.

A.4.3 METRICS DETAILS

We design task-specific metrics for evaluations. Metrics’ mathematical formulas are shown in
Table 10.
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Notion Explanation
P (t) 3D position of the center of the object
F (t) Aggregated three-axis force vector on the surface of the tactile sensor
Ft(t) The shear force in the sensor coordinate frame
Fn(t) The normal force in the sensor coordinate frame
µ The friction coefficient
l(t) The center location of the contact area on the tactile sensor surface
θ(t) The rotated angle of the object from its initial pose

SDF (t) The signed distance field of the object
M(t) The mass distribution of the object

dcontact(t) The traveling distance of the sensor while being in contact with the surface
N The number of the object’s particles

Table 9: Explanation of parameters used in loss and metric computation

Surface Follow We evaluate the continuous in-contact distance dcontact(t) the sensor travels on
the surface within a fixed timestep span. Here, a longer distance means better results.

Cable Straighten Our metric is the average displacement of each particle i on the cable from its
target horizontal position ||pi(t)− pi(target)||. A smaller value indicates a more desired result.

Case Open We calculate the opened angle in degrees between the case lid and the horizontal
tabletop θ(t). The opened angle, due to gravity, can potentially show a negative value if the training
results are suboptimal. Therefore, a larger value suggests better performance.

Object Repose We measure the rotated angle in degrees of the object θ(t) from its initial pose. A
larger value in this context indicates better performance.

Task Mathematical Formula of the Metric

SurfaceFollow dcontact(t)

CableStraighthen
∑

i ||pi(t)−pi(target)||2

N

CaseOpen θ(t)

ObjectRepose θ(t)

Table 10: Metrics for four contact-rich manipulation tasks.

A.4.4 LOSS DETAILS

We design different losses used for different tasks to obtain state or tactile reward, shown in Table 11.

Grasping The losses we used are defined in Section 4.5. γ and η are set to 0.1.

Surface Follow We use Lpos as the state loss and Lforce as the tactile loss.

Cable Straighten We use Lcable as the state reward which is the sum of the distance between the
target position and the current position for each node on the cable. Tactile loss comprises Lforce +
Lloc.

Case Open & Object Repose We use Langle as the state loss and Lforce as the tactile loss.

A.4.5 PARAMETER DETAILS

We apply optimized parameters including FEM-based sensor’s Lamé parameters µ and λ in
manipulation tasks since we only use one kind of tactile sensor. Other parameters vary depending
on tasks since different tasks use different objects. Sensor-related parameters are shown in Table 12.
Object simulation parameters for different tasks are shown in Table 13, where Sobj is the object
scale compared to the grid size in MLS-MPM, ρ is the density, Np is the number of particles in one
dimension of the space, µ and λ are Lamé parameters, and σ is the yield stress for the elastoplastic
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Loss Equation

Lpos ||P (t)− Ptarget||2

Ldeform γLdist + ηLmass

Ldist SDF (t) · SDFtarget

Lmass ||M(t)−Mtarget||

Lslip
||Ft(t)||

µ||Fn(t)||

Lforce ||F (t)− Ftarget||2

Lloc ||l(t)− ltarget||2

Langle ||θ(t)− θtarget||2

Lcable

∑
i ||pi(t)− pi(target)||2

Table 11: Losses used for manipulation tasks.

Task µ(FEM)/Pa λ(FEM)/Pa kn(Contact) kd(Contact) kt(Contact) µ(Contact)
ObjectRepose 1.294e3 9.201e3 55.0 269.44 108.72 14.16

CableStraighthen 1.294e3 9.201e3 55.33 239.97 94.35 4.90

CaseOpen 1.294e3 9.201e3 34.53 269.44 108.72 14.16

SurfaceFollow 1.294e3 9.201e3 34.53 269.44 154.78 43.85

Grasping 1.294e3 9.201e3 55.33 239.97 94.35 4.90

Table 12: FEM-based sensor parameters and contact model parameters.

object. For the articulated object, we list the Lamé parameter for parts from the top to the bottom of
the object.

A.4.6 TRAJECTORY OPTIMIZATION TRAINING LOSS CURVES

We show the trajectory optimization training loss curves for four contact-rich manipulation tasks in
Fig. 7. For each task, we set 100 optimization iterations for fair comparison. From the curves, we
show state + tactile settings converge faster than the state-only settings which indicates the benefits
of using tactile information on these manipulation tasks.

A.4.7 DISCUSSIONS ON CONTACT-RICH MANIPULATION TASKS

For RL algorithms, both PPO and SAC’s losses did not decrease in 100 iterations. There are three
potential reasons: 1. The amount of data we used is insufficient for RL algorithms to learn within 100
iterations. 2. Our tasks include continuous contact, whereas RL algorithms operate on a discretized
per-small-time-step basis, making it challenging to optimize. 3. RL algorithms in general require
more detailed reward designs while the current reward functions are too simple to train proper
policies.

For CMA-ES, we find that training losses decreased slowly. This is because CMA-ES is a sample-
based optimization method and it is not as efficient as the gradient-based optimization method. It

Task Object Type Sobj ρ/(g/cm3) Np µ /Pa λ/Pa σ/Pa

ObjectRepose Rigid 4.0 1.2 38 1.428e3 5.714e3 N/A
CaseOpen Articulated 6.0 1.2 57 1.428e3/e1/e5 5.714e3/e1/e5 N/A

SurfaceFollow Rigid 8.0 32.0 76 1.428e6 5.714e6 N/A
Grasping Elastic Elastic 2.0 1.2 19 1.428e3 5.714e3 N/A

Grasping Elastoplastic Elastoplastic 2.0 1.2 19 1.428e3 5.714e3 5e3

Table 13: MLS-MPM based object simulation parameters
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Figure 7: Training loss curves of trajectory optimization method for four contact-rich manipulation tasks. The
top row shows the training with state-only observations and the bottom row shows the training with state+tactile
observations.

Frame per second (FPS) Forward Backward FEM Contact MPM/PBD
ObjectRepose 13.11 8.93 91.38 199.85 18.38

CableStraighthen 21.63 12.10 35.01 267.41 419.14

CaseOpen 7.41 4.13 67.07 39.58 11.46

SurfaceFollow 25.03 18.75 30.88 297.08 592.01

Table 14: Computational runtime benchmark on four contact-rich manipulation tasks. Simulation (Forward),
Gradient backpropagation (Backward), and each module’s runtime during forward simulation are reported in
averaged frame per second (FPS) over a trajectory.

does show the ability to optimize the trajectory but requires more than 100 iterations of optimization
to converge.

Thus, we can conclude that our proposed gradient-based optimization method with differential
physics has these merits: 1) Better data usage efficiency, 2) faster converge speed with the guidance
of gradients, and 3) simpler loss function design. We additionally visualize the failure cases of RL
algorithms and CMA-ES on our project website.

A.5 COMPUTATIONAL RUNTIME OF THE SYSTEM

We report the averaged computational running speed of our system on four contact-rich manipulation
tasks in Table. 14. From the table, we show the simulation speed (Forward) depends on different
task settings and is significantly affected by the object simulation. The gradient backpropagation
(Backward) speed is twice as slow as the simulation. This is because we optimize our system to
be memory efficient. During the forward simulation, we save the states of each first simulation
substep, and then during each backward step, we retract them and replay the corresponding forward
step to fill in the rest substeps’ states. FEM-based tactile sensor simulation can consistently run at
high speed (greater than 30 FPS) even with two sensors in the CableStraighthen task. However,
the simulation speed of objects varies such as the multi-material MPM-based object simulation is
slower than others in the CaseOpen task, while the PBD-based cable simulation is the fastest. All
experiments were conducted on a Ubuntu 18.04 with AMD Ryzen 7 5800x 8-core processor and
Nvidia GeForce RTX 3060.
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A.6 REAL-WORLD EXPERIMENTS

A.6.1 EXPERIMENTAL SETUP DETAILS

We use a Gelsight tactile sensor for both system identification tasks and sim-to-real tasks. The
sensor is manufactured in the laboratory with design flexibility. The soft elastomer is made with
SYLGARD 184 silicone elastomer, and in a dome shape with an inner radius of 7.5 mm and an
outer radius of 15.0 mm. The sensor uses an Arducam 180-degree fisheye camera to output tactile
images.

A.6.2 EXPERIMENTAL RESULTS

To demonstrate our proposed simulator’s fidelity, we conduct two sets of experiments in the real
world. First, we demonstrate that the trajectories optimized with differential physics can be deployed
on real-world setups in Fig. 8. Here we show the sim-to-real transfers on SurfaceFollow and
CaseOpen tasks. Then we further evaluate with a closed-loop grasp task by only using tactile sensing
feedback. We train a grasp stability prediction network in simulation by using a sequence of tactile
observations during grasping as inputs and predicting a binary output to indicate whether it is a
stable grasp or a slippage. The prediction is then used to guide the grasp adjustment. We directly
use the trained model on a real-world deformable object grasp.

To train the grasp stability prediction network, we apply domain randomization and generate
multiple trajectories in simulation with different parameter settings to improve the generalization
of sim2real transfer. The process of trajectory generation is we let the gripper close at the speed
of vclose = 5 mm/s until the gripper begins to squeeze the object for Tcontact frames, then we
let the gripper lift the object for Tlift frames at the speed of vlift = 1 mm/s. If the slipping
distance between the object and the sensor is less than 0.75 mm, we label the trajectory as a stable
grasp. The parameters we used are shown in Table 15, where Sobj and ρ are the scale and density
of the object. Additionally, the object shape is chosen randomly from the object set of grasping
experiments in Section 4.5. For the Lamé parameters of the tactile sensor, we use the results from
system identification in Section 4.3 The Lamé parameters of the object are set as µ = 1.428e3,
λ = 5.741e3. The frequency of the system is 40 Hz.

We generate 50 trajectories of stable grasp and 50 trajectories of unstable grasp in total. We split the
training/validation set in a ratio of 7:3. We use two LSTM layers and one MLP layer as the network
architecture. We use the sequence of tactile markers’ 2D motions as inputs for the model. Each
frame’s tactile markers’ 2D motions are obtained by subtracting the initial marker positions from the
marker positions in the current frame. Due to the varying number of frames in different trajectories,
we perform zero-padding at the beginning of the trajectories, making the network input size (L, 136
× 2), where L is the maximum number of frames among these trajectories. After training for 10
epochs, the success rate reaches 94.3% on the training set and 90.0% on the validation set.

We present our sim2real adaptive grasp policy for grasping a deformable object. Our goal is to grasp
the object with minimal deformation. We applied our trained model directly on the real-world setup
to perform an adaptive grasp. We first attempt to grasp and lift the object with minimal force, feeding
the sequence of tactile marker motions into our trained model. If the model predicts slippage, we
tighten the gripper, or if the model predicts a stable grasp, we continue lifting the object to the
determined height. In Fig. 9, we show a comparison of our approach with two baselines: 1) forceful
grasp where the gripper tightly grips the object, and 2) light grasp where the gripper lifts the object
upon contact. We can see that our method successfully grasps and lifts the deformable object with
minimal deformation while the two baselines failed by damaging the object or causing slippage.
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Figure 8: Real-world experiments of surface following and case opening tasks. We deploy the optimized
trajectories from simulation directly to real-world setups.

Figure 9: Real-world experiments of grasping a deformable object. With hardcoded policies such as forceful
grasp or light grasp, they failed to grasp the deformable object with either damage or slippage. With our
sim2real adaptive grasp policy, we can successfully grasp the object.

Parameter Value
kn [10,100]
kd [100,400]
kt [100, 250]
µ [5, 80]

Sobj [2, 5]
ρ [0.1, 4]

Tcontact [0, 60]
Tlift 60

Table 15: Parameters for domain randomization on sim2real grasp policy training.
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